
Differences Between SSLv2, SSLv3, and TLS

Loren Weith: 0600978

July 3, 2006

SSLv2, SSLv3, and TLS (1.0) all provide for a secure channel between clients
and servers: if looked at in terms of the OSI reference model, SSL and TLS are
said to be at the Presentation Layer (layer 6.) SSLv3 contains improvements
to SSLv2 and TLS[3] is almost exactly like SSLv3 but it is the outcome of the
IETF standardization process for SSLv3. They are apparently so similar that
the specification for the TLS versions of IMAP, POP3, and ACAP says in it’s
first line refers to TLS as “the TLS protocol (formerly known as SSL)”[8].

As the name SSL (Secure Socket Layer) implies, SSL was meant to work very
similarly to Berkeley sockets so that applications that were initially designed to
use the sockets interface could be easily ported. Generic SSL wrappers like
stunnel[1] can be used to directly wrap unmodified servers for certain protocols
(such as POP3 and IMAP) if the only difference between the “s” version of the
protocol and the original is the encryption and port number (the TLS session
is expected on connect – often referred to as tls-on-connect.) In fact, the RFC
describing the TLS extensions of POP3 and IMAP only grudgingly support the
tls-on-connect method and the RFC recommends against it[8].

Many of the TLS’ified protocols extend the existing protocol to support a
STARTTLS command that initiates TLS if supported by the client, thus allowing
client software developers to add the capability without requiring their users
to make configuration changes in order to benefit from better security (a weak
argument since the software could just check for the existence of the s-protocol
port and then fall back) and it also keeps aging firewalls from preventing secure
communication over older protocols like SMTP. Some TLS extensions like the
TLS extension to SMTP intentionally don’t allow tls-on-connect at all.

1 SSLv2

1.1 Protocol Overview

The SSLv2 protocol can be broken down into the handshake and data transfer
modes.

1

1.1.1 Handshake

The handshake protocol comes first and establishes the security parameters of
a connection that may or may not be part of an existing session. During the
course of the protocol, either the identity of the server or both the client and
server can be verified using X.509 certificates. The master encryption key can
be shared across multiple connections to avoid unnecessarily repeating the fairly
expensive key negotiation process any more than is necessary.

Presumably the motivation for the feature came from the design of HTTP
1.0, which does not support multiple operations in a single server connection
as HTTP/1.1 does, forcing browsers to make tons of connections to render a
single page. Browsers responded by making several concurrent connections to
web servers to mitigate the performance hit of opening connections as needed
(latency kills here, not bandwidth so sending a stack of SYN’s up front, then
multiple ACK’s, etc. is substantially faster than executing multiple consecutive
setups.) Adding RSA to the mix would have limited the effectiveness of that
strategy.

The following is a brief synopsis of the handshake protocol for SSLv2:

• No existing session[7]: Since there is no existing session identifier, there
is no session and one needs to be built up. The client issues a challenge,
the server chooses a connection-id, then the client verifies the server’s iden-
tity and then chooses a session key and security spec for the session based
on an advertisement of the server’s capabilities that is unauthenticated.
The session key is the output of a MD5Hash(master-key, [0 or 1]1,

challenge, connection-id) so it should be different for every connec-
tion and direction. The server can then either send back the challenge and
generate a session-id (encrypted and authenticated) or it can ask for and
verify a client certificate before doing so.

• Client and server have a common session identifier[7]: This version
runs similarly to above except that the client includes a session-id in the
initial communication and if the server knows about it then they skip the
key agreement phase since it has already happened.

1.1.2 Records

Every message in an SSLv2 exchange is embedded in a record and a record is
made up of a record header and payload, whether encrypted or in the clear.
Because SSLv2 sometimes uses block ciphers, the data to be encrypted must
be a multiple of the block size for the encryption algorithm so padding may be
added to force the input to the encryption algorithms to be the right size. The
cleartext payload of the record is then padded out, encrypted on the appropriate
session key, and placed after the record header.

The record header is a 16 or 24 bit string indicating the length of the record
and the length of the padding (if any padding needed.) The first two bytes

10 for client-read-key, 1 for client-write-key

2

indicate whether there is padding or a “security escape” and the length of the
actual data portion of the record. The possible third byte indicates the padding
length.

The first bit of the string indicates whether there is padding (0 if there is, 1
if there isn’t) and the second bit indicates the presence of a “security escape”2,
the next 14 bits are the size of the data in the record, and the last byte (if
there is padding) is the length of the padding[9]. A connection is composed
of multiple records. Each transmission in the protocol has a sequence number
that is protected by a message authentication code, protecting the stream from
a replay attack[7].

1.2 Security Problems

• The client chooses a cipher spec based on information provided

by the server that is not authenticated. An attacker can thus influ-
ence the choice of cipher-spec to something that is supported but easier
to crack than the client’s choice would have been[2]. Wagner and Schneier
give the example of one of the export ciphers, though neither Apache nor
Firefox actually support the export crypto option[10].

• Truncation attacks are possible because the end of an SSLv2 ses-
sion is merely signalled by tearing down the underlying TCP session[2].
On the other hand, some protocols running on top of SSLv2 have struc-
tures in place to detect truncated transfers (for example, the recommended
Content-length header in HTTP)[5] can be used to detect such trunca-
tions.

• The same key used for encryption is used for message authen-

tication so if an exportable browser is used, assurance of authenticity is
weakened to the same degree as privacy of the data, which is apparently
not required to meet US export regulations. SSLv2 only supports the use
of MD5, which is known, at least today, to have some serious flaws[2][11].

• Padding size is included in the cleartext record header unneces-

sarily. SSLv2 does not support padding except in the case of block ciphers
where it is needed to make the cipher work. Even then, the padding size
is in the cleartext portion of the record header. The record protocol needs
only the length of the total record to be cleartext in order to distinguish
individual records. Having the exact data length in clear text gives an
adversary better traffic analysis capability. It is enough that the record
size be a multiple of the chosen cipher’s block size: the pad size should be
placed in the payload so that it gets encrypted with the rest of the payload
to hide the size of the actual data better. It would also be nice to allow
a wider range of pad sizes so that random padding can be used to avoid
giving hints about the type of traffic going across the connection[10].

• Data are not compressed before encryption: a cryptanalyst is aided
by knowing something about the structure of the plaintext so it is to

2no security escapes are defined in version SSLv2

3

our advantage to deny the cryptanalyst that information. Compression
eliminates most structure and redundancy from the plaintext and usually
makes it smaller, limiting a cryptanalyst’s knowledge of the plaintext’s
structure and improving transmission speed for free.

2 SSLv3 vs SSLv2

SSLv3 is said to be a significant improvement over SSLv2 in many ways and
many of those will be enumerated here.

2.1 Differences

• The SSLv3 standard supports fall-back to SSLv2 so the obvious attack
would be to make the two sides talk to each other using SSLv2 and at-
tack that way. The compliant SSLv3 implementations prevent v3-capable
clients and servers from talking to each other using the v2 protocol by
using non-random PKCS padding (the first 8 bytes are 0x03) for the RSA
encryption of the key data. SSLv3 partners will notice this and refuse to
play, v2 partners will not notice and will play, thus no problem. The rest
of the padding is random so there is minimal impact on the security added
by random padding[6].

• support for anonymous connections: SSLv3 has three modes of key
exchange: authenticated server, authenticated server and client, and anony-

mous. Anonymous key-exchange is new and inherently susceptible to man
in the middle attacks since there is no certifying authority signature to
use for verification of the RSA server RSA key[6].

• Protection against outside manipulation of handshake protocol:
The finish messages are authenticated and include a hash of all the pre-
vious messages including the finish message so that the whole transaction
will fail if there is any difference between what each party though hap-
pened and what happened. It’s a nice solution, though it does allow almost
the whole transaction to take place before calling a stop to it[6][10].

• Truncation attacks are not possible in SSLv3: closure alerts3 were
added so that the connection only closes without error if a closure message
has been received (either end can initiate). It is also allowed for one of the
parties to send the close notify and then disconnect without waiting for
a response back. The session becomes un-resumable if a connection shuts
down unexpectedly[6]. There is no mention of passing the fact that the
session ended abnormally to the layers above but that is likely to be done
in actual implementations.

• Compression is required by SSLv3 although the compression algo-
rithm starts out being the CompressionMethod.null (identity function)[6].
Any good implementation will presumably insist on using something bet-
ter.

3such alerts are authenticated

4

• Diffie-Hellman key exchange is a possible choice in SSLv3 and man in
the middle attacks have been prevented by authenticated exponents[10].

• In most situations where hashes are used, both MD5 and SHA-1

are used to prevent the failure of one of them to completely destroy the
security of TLS.[6]

2.2 Problems with SSLv3

• It is possible to cause a key exchange algorithm rollback if the
SSL connection is only attempting to provide authenticity services and
not encryption[10].

• Replay attacks on anonymous key exchange: That allows an at-
tacker to pretend to be the server without detection but of course there
is not much that can be accomplished with that since he can’t guess the
private key associated with the random RSA key being talked about.

• Known plaintexts are available to an attacker in certain portions of
the protocol[10]. Of course the cryptosystems in use are supposed to
be resistant to such attacks and that is likely to be the reason why the
designers were not terribly concerned. On the other hand, if they are not
necessary to be revealed they should not be.

• Ad-hoc use of message authentication codes: there are MAC con-
structions that have not been subject to analysis such as HMAC[10]. Wag-
ner and Schneier don’t have any specific objections to them but the point
is valid: it’s better to use something that has withstood a fair amount of
analysis than something that hasn’t, particularly in fielded systems.

3 SSLv3 vs TLS 1.0

The TLS specification is very close to SSLv3, right down to section numbers
and identical wording in many cases. The differences include the following[2]:

3.1 Differences

• Ad-hoc MAC’s were changed to HMAC’s as suggested by [10][2].

• Added protocol and cipher suite requirements: Diffie-Hellman, Digital Sig-
nature Standard (DSS), and Trible-DES are required instead of optional[2].

• Changes were made to client-write and server-write key calculation [2]
claims that the changes are an improvement which it may well be.

5

3.2 Problems

Any problems with SSLv3 that were not mentioned in the list of differences are
likely also to be problems in TLS 1.0.

• A chosen plaintext attack exists that requires knowledge of the initializa-
tion vector for a record.[4]

4 TLS 1.1 vs TLS 1.0

4.1 Differences

• TLS 1.1 no longer requires sessions to be restarted in the event of an
unexpected connection drop.[4]

• The export-restriction alert is no longer used.[4]

• Certificate format change to PKCS#1[4]

• Export grade cryptography was removed and TLS 1.1 implementations
must not support them any longer.[4]

• Explicit initialization vectors are used to address a known plaintext attack
in TLS 1.0.[4]

• “Handling of padding errors changed from bad-record-mac rather than
decryption-failed alert to protect against CBC attacks”[4]

• ”IANA registries are defined for protocol parameters”[4]

• Informational notes about new attacks on TLS added.[4]

References

[1] Brian Hatch. Stunnel – Universal SSL Wrapper. http://www.stunnel.

org/.

[2] EADS Defence and Security Systems SA. Investigations about ssl. http:

//www.eucybervote.org/Reports/MSI-WP2-D7V1-V1.0-02.htm.

[3] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed
Standard), January 1999. Obsoleted by RFC 4346, updated by RFC 3546.

[4] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.1. RFC 4346 (Proposed Standard), April 2006. Updated by RFC
4366.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616
(Draft Standard), June 1999. Updated by RFC 2817.

6

[6] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The ssl protocol
version 3.0. http://wp.netscape.com/eng/ssl3/draft302.txt.

[7] Kipp E. B. Hickman. SSL 2.0 Protocol Specification. http://www.

netscape.com/eng/security/SSL 2.html.

[8] C. Newman. Using TLS with IMAP, POP3 and ACAP. RFC 2595 (Pro-
posed Standard), June 1999.

[9] Adam Shostack. An overview of ssl (version 2), May 1995. http://www.

homeport.org/∼adam/ssl.html.

[10] David Wagner and Bruce Schneier. Analysis of the ssl 3.0 protocol. In 2nd

USENIX Workshop on Electronic Commerce, November 1996.

[11] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions
for hash functions md4, md5, haval-128 and ripemd. Cryptology ePrint
Archive, Report 2004/199, 2004. http://eprint.iacr.org/.

7

